/** * @license * Copyright (c) 2000-2005, Sean O'Neil (s_p_oneil@hotmail.com) * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * * Redistributions of source code must retain the above copyright notice, * this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * Neither the name of the project nor the names of its contributors may be * used to endorse or promote products derived from this software without * specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * Modifications made by Analytical Graphics, Inc. */ // Code: http://sponeil.net/ // GPU Gems 2 Article: https://developer.nvidia.com/gpugems/GPUGems2/gpugems2_chapter16.html attribute vec4 position; uniform vec4 u_cameraAndRadiiAndDynamicAtmosphereColor; // Camera height, outer radius, inner radius, dynamic atmosphere color flag const float Kr = 0.0025; const float Kr4PI = Kr * 4.0 * czm_pi; const float Km = 0.0015; const float Km4PI = Km * 4.0 * czm_pi; const float ESun = 15.0; const float KmESun = Km * ESun; const float KrESun = Kr * ESun; const vec3 InvWavelength = vec3( 5.60204474633241, // Red = 1.0 / Math.pow(0.650, 4.0) 9.473284437923038, // Green = 1.0 / Math.pow(0.570, 4.0) 19.643802610477206); // Blue = 1.0 / Math.pow(0.475, 4.0) const float rayleighScaleDepth = 0.25; const int nSamples = 2; const float fSamples = 2.0; varying vec3 v_rayleighColor; varying vec3 v_mieColor; varying vec3 v_toCamera; float scale(float cosAngle) { float x = 1.0 - cosAngle; return rayleighScaleDepth * exp(-0.00287 + x*(0.459 + x*(3.83 + x*(-6.80 + x*5.25)))); } void main(void) { // Unpack attributes float cameraHeight = u_cameraAndRadiiAndDynamicAtmosphereColor.x; float outerRadius = u_cameraAndRadiiAndDynamicAtmosphereColor.y; float innerRadius = u_cameraAndRadiiAndDynamicAtmosphereColor.z; // Get the ray from the camera to the vertex and its length (which is the far point of the ray passing through the atmosphere) vec3 positionV3 = position.xyz; vec3 ray = positionV3 - czm_viewerPositionWC; float far = length(ray); ray /= far; float atmosphereScale = 1.0 / (outerRadius - innerRadius); #ifdef SKY_FROM_SPACE // Calculate the closest intersection of the ray with the outer atmosphere (which is the near point of the ray passing through the atmosphere) float B = 2.0 * dot(czm_viewerPositionWC, ray); float C = cameraHeight * cameraHeight - outerRadius * outerRadius; float det = max(0.0, B*B - 4.0 * C); float near = 0.5 * (-B - sqrt(det)); // Calculate the ray's starting position, then calculate its scattering offset vec3 start = czm_viewerPositionWC + ray * near; far -= near; float startAngle = dot(ray, start) / outerRadius; float startDepth = exp(-1.0 / rayleighScaleDepth ); float startOffset = startDepth*scale(startAngle); #else // SKY_FROM_ATMOSPHERE // Calculate the ray's starting position, then calculate its scattering offset vec3 start = czm_viewerPositionWC; float height = length(start); float depth = exp((atmosphereScale / rayleighScaleDepth ) * (innerRadius - cameraHeight)); float startAngle = dot(ray, start) / height; float startOffset = depth*scale(startAngle); #endif float lightEnum = u_cameraAndRadiiAndDynamicAtmosphereColor.w; vec3 lightDirection = czm_viewerPositionWC * float(lightEnum == 0.0) + czm_lightDirectionWC * float(lightEnum == 1.0) + czm_sunDirectionWC * float(lightEnum == 2.0); lightDirection = normalize(lightDirection); // Initialize the scattering loop variables float sampleLength = far / fSamples; float scaledLength = sampleLength * atmosphereScale; vec3 sampleRay = ray * sampleLength; vec3 samplePoint = start + sampleRay * 0.5; // Now loop through the sample rays vec3 frontColor = vec3(0.0, 0.0, 0.0); for(int i=0; i